圆周率股票计算

chenologin2分享 时间:

圆周率股票计算

圆周率计算

古今中外,许多人致力于圆周率的研究与计算。

为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。

十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。

整个十九世纪,可以说是圆周率的手工计算量最大的世纪。

进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。

借助于超级计算机,人们已经得到了圆周率的2061亿位精度。

历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。

可惜,后人发现,他从第528位开始就算错了。

把圆周率的数值算得这么精确,实际意义并不大。

现代科技领域使用的圆周率值,有十几位已经足够了。

如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。

以前的人计算圆周率,是要探究圆周率是否循环小数。

自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。

现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。

圆周率计算方法?

割圆术3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周长的方法。

刘徽发明“割圆术”是为求“圆周率”。

那么圆周率究竟是指什么呢?它其实就是指“圆周长与该圆直径的比率”。

很幸运,这是个不变的“常数”!我们人类借助它可以进行关于圆和球体的各种计算。

如果没有它,那么我们对圆和球体等将束手无策。

同样,圆周率数值的“准确性”,也直接关乎到我们有关计算的准确性和精确度。

这就是人类为什么要求圆周率,而且要求得准的原因。

根据“圆周长/圆直径=圆周率”,那么圆周长=圆直径*圆周率=2*半径*圆周率(这就是我们熟悉的圆周长=2πr的来由)。

因此“圆周长公式”根本就不用背的,只要有小学知识,知道“圆周率的含义”,就可自行推导计算。

也许大家都知道“圆周率和π”,但它的“含义及作用”往往被忽略,这也就是割圆术的意义所在。

由于“圆周率=圆周长/圆直径”,其中“直径”是直的,好测量;难计算精确的是“圆周长”。

而通过刘徽的“割圆术”,这个难题解决了。

只要认真、耐心地精算出圆周长,就可得出较为精确的“圆周率”了。

——众所周知,在中国祖冲之最终完成了这个工作。

圆周率如何计算

圆周率计算公式 一、基础公式: ⑴ π=180°sinθ∕θ 、 ⑶ π=180°tgθ∕θ 、 (θ→0°.θ>0°) 二、 派生公式: ⑸ π=(n/2)*sin(360°∕n) 、 ⑺ π=(n/2)*tg(360°∕n) 、 (n→∞, n≥5) 派生公式: ⑼ π=nsin(180°∕n) 、 ⑾ π=ntg(180°∕n) 、 (n→∞,n≥3) 三、专业公式: ①π= 2^n√(2-√(2+…√2)…) ②π=3*2^n√(2-√(2+…√3)…) ③π=2*2^n√(2-√(2+…√2)…)/√(2+√(2+…√2)…) ④π=6*2^n√(2-√(2+…√3)…)/√(2+√(2+…√3)…) (n→∞,根式中有n个2) 网上有很多 很容易找到

圆周率如何计算出来的?

圆周率它定义为圆形之周长与直径之比。

它也等于圆形之面积与半径平方之比。

圆周率计算方法古人计算圆周率,一般是用割圆法。

即用圆的内接或外切正多边形来逼近圆的周长。

阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。

1、马青公式 π=16arctan1/5-4arctan1/239 这个公式由英国天文学教授约翰·马青于1706年发现。

他利用这个公式计算到了100位的圆周率。

马青公式每计算一项可以得到1.4位的十进制精度。

因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。

还有很多类似于马青公式的反正切公式。

在所有这些公式中,马青公式似乎是最快的了。

虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。

2、拉马努金公式 1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。

这个公式每计算一项可以得到8位的十进制精度。

1985年Gosper用这个公式计算到了圆周率的17,500,000位。

引用:http://baike.baidu.com/view/3287.htm#4

圆周率的计算公式.简单一点的

圆周率古人计算圆周率,一般是用割圆法。

即用圆的内接或外切正多边形来逼近圆的周长。

阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。

这种基于几何的算法计算量大,速度慢,吃力不讨好。

随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。

下面挑选一些经典的常用公式加以介绍。

除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。

1、马青公式π=16arctan1/5-4arctan1/239这个公式由英国天文学教授约翰·马青于1706年发现。

他利用这个公式计算到了100位的圆周率。

马青公式每计算一项可以得到1.4位的十进制精度。

因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。

还有很多类似于马青公式的反正切公式。

在所有这些公式中,马青公式似乎是最快的了。

虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。

2、拉马努金公式1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。

这个公式每计算一项可以得到8位的十进制精度。

1985年Gosper用这个公式计算到了圆周率的17,500,000位。

1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。

1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。

丘德诺夫斯基公式的另一个更方便于计算机编程的形式是:3、AGM(Arithmetic-Geometric Mean)算法高斯-勒让德公式:圆周率这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。

1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。

4、波尔文四次迭代式:这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表的。

5、bailey-borwein-plouffe算法6.丘德诺夫斯基公式7.莱布尼茨公式圆周率的计算如下:在圆中画等边的多边形来实现,划分越多越接近圆周率,设圆半径为a1)等边三角形,圆心到三个顶点的距离是一样的,三角形的面积为3√3/4*a^2=1.332a^22)正方形,面积为2a^23)等边五角形,面积为2.377a^24)等边六角形,面积为3√3/2a=2.598a^2从数值可以看到变化趋势:1.332,2,2.377,2.598....越来越接近3.141592654...老祖宗祖冲之就是靠多边形这样计算出来的,只不过他比我们困难,因为那时不能使用三角函数表,还需要自己去计算。

我们要得到小数点后超过4位的准确数字,我们也只有自己计算,因为三角函数表就4位有效数字。

....这样一直计算下去,其结果将越来越接近π(圆周率),为计算方便,可以从正方形到八边形π/4=1-1/3+1/5-1/7+1/9-1/11+……π不是个公式,它只是一个定值 c÷2r=π

求圆周率的计算公式?

最有可能是使用连分数法:由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。

于是有人提出祖冲之可能是在求得盈二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650… 最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。

若是对这些感兴趣可以上网找找,这里有个网站仅供参考 http://zhidao.baidu.com/question/29237343.html

关于圆周率的计算方法?谢谢!

割圆术 刘徽割圆术示意图片.割圆术(cyclotomic method) 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。

“圜,一中同长也”。

意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。

早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。

认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。

我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式。

为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上著名的“割圆术”。

编辑本段数学意义 “割圆术”,则是以“圆内接正多边形的周长”,来无限逼近“圆周长”。

刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。

即通过圆内接正多边形细割圆周,并使正多边形的周长无限接近圆周长,进而来求得较为精确的圆周率。

刘徽发明“割圆术”是为求“圆周率”。

那么圆周率究竟是指什么呢?它其实就是指“圆周长与该圆直径的比率”。

很幸运,这是个不变的“常数”!我们人类借助它可以进行关于圆和球体的各种计算。

如果没有它,那么我们对圆和球体等将束手无策。

同样,圆周率数值的“准确性”,也直接关乎到我们有关计算的准确性和精确度。

这就是人类为什么要求圆周率,而且要求得准的原因。

根据“圆周长/圆直径=圆周率”,那么圆周长=圆直径*圆周率=2*半径*圆周率(这就是我们熟悉的圆周长=2πr的来由)。

因此“圆周长公式”根本就不用背的,只要有小学知识,知道“圆周率的含义”,就可自行推导计算。

也许大家都知道“圆周率和π”,但它的“含义及作用”往往被忽略,这也就是割圆术的意义所在。

由于“圆周率=圆周长/圆直径”,其中“直径”是直的,好测量;难计算精确的是“圆周长”。

而通过刘徽的“割圆术”,这个难题解决了。

只要认真、耐心地精算出圆周长,就可得出较为精确的“圆周率”了。

——众所周知,在中国祖冲之最终完成了这个工作。

编辑本段发展历史 中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。

但用这个数值进行计算的结果,往往误差很大。

正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。

东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。

这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。

刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。

在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。

这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。

如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。

按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为3.14和 3.1416这两个近似数值。

这个结果是当时世界上圆周率计算的最精确的数据。

刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。

以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于使圆周率精确到了小数点以后的第七位。

在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。

祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.,其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。

刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。

编辑本段基本算法 根据刘徽的记载,在刘徽之前,人们求证圆面积公式时,是用圆内接正十二边形的面积来代替圆面积。

应用出入相补原理,将圆内接正十二边形拼补成一个长方形,借用长方形的面积公式来论证《九章算术》的圆面积公式。

刘徽指出,这个长方形是以圆内接正六边形周长的一半作为长,以圆半径作为高的长方形,它的面积是圆内接正十二边形的面积。

这种论证“合径率一而弧周率三也”,即后来常说的“...

古代圆周率计算

圆的周长与直径之比是一个常数,人们称之为圆周率。

通常用希腊字母π 来表示。

1706年,英国人琼斯首次创用π 代表圆周率。

他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。

现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。

在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。

到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。

东汉的数学家又将 π值改为 (约为3.16)。

直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。

他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。

这是第一次在科学中创用上、下界来确定近似值。

第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。

我国称这种方法为割圆术。

直到1200年后,西方人才找到了类似的方法。

后人为纪念刘徽的贡献,将3.14称为徽率。

公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。

祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。

祖冲之的圆周率,保持了一千多年的世界记录。

终于在1596年,由荷兰数学家卢道夫打破了。

他把π 值推到小数点后第15位小数,最后推到第35位。

为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为"卢道夫数"。

望采纳

圆周率的计算方法

p(圆周率) =3. 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989 3809525720 1065485863 2788659361 5338182796 8230301952 0353018529 6899577362 2599413891 2497217752 8347913151 5574857242 4541506959 5082953311 6861727855 8890750983 8175463746 4939319255 0604009277 0167113900 9848824012 8583616035 6370766010 4710181942 9555961989 4676783744 9448255379 7747268471 0404753464 6208046684 2590694912 9331367702 8989152104 7521620569 6602405803 8150193511 2533824300 3558764024 7496473263 9141992726 0426992279 6782354781 6360093417 2164121992 4586315030 2861829745 5570674983 8505494588 5869269956 9092721079 7509302955 3211653449 8720275596 0236480665 4991198818 3479775356 6369807426 5425278625 5181841757 4672890977 7727938000 8164706001 6145249192 1732172147 7235014144 1973568548 1613611573 5255213347 5741849468 4385233239 0739414333 4547762416 8625189835 6948556209 9219222184 2725502542 5688767179 0494601653 4668049886 2723279178 6085784383 8279679766 8145410095 3883786360 9506800642 2512520511 7392984896 0841284886 2694560424 1965285022 2106611863 0674427862 2039194945 0471237137 8696095636 4371917287 4677646575 7396241389 0865832645 9958133904 7802759009 9465764078 9512694683 9835259570 9825822620 5224894077 2671947826 8482601476 9909026401 3639443745 5305068203 4962524517 4939965143 1429809190 6592509372 2169646151 5709858387 4105978859 5977297549 8930161753 9284681382 6868386894 2774155991 8559252459 5395943104 9972524680 8459872736 4469584865 3836736222 6260991246 0805124388 4390451244 1365497627 8079771569 1435997700 1296160894 4169486855 5848406353 4220722258 2848864815 8456028506 0168427394 5226746767 8895252138 5225499546 6672782398 6456596116 3548862305 7745649803 5593634568 1743241125 1507606947 9451096596 0940252288 7971089314 5669136867 2287489405 6010150330 8617928680 9208747609 1782493858 9009714909 6759852613 6554978189 3129784821 6829989487 2265880485 7564014270 4775551323 7964145152 3746234364 5428584447 9526586782 1051141354 7357395231 1342716610 2135969536 2314429524 8493718711 0145765403 5902799344 0374200731 0578539062 1983874478 0847848968 3321445713 8687519435 0643021845 3191048481 0053706146 8067491927 8191197939 9520614196 6342875444 0643745123 7181921799 9839101591 9561814675 1426912397 4894090718 6494231961 5679452080 9514655022 5231603881 9301420937 6213785595 6638937787 0830390697 9207734672 2182562599 6615014215 0306803844 7734549202 6054146659 2520149744 2850732518 6660021324 3408819071 0486331734 6496514539 0579626856 1005508106 6587969981 6357473638 4052571459 1028970641 4011097120 6280439039 7595156771 5770042033 7869936007 2305587631 7635942187 3125147120 5329281918 2618612586 7321579198 4148488291 6447060957 ...

计算圆周率简单方法

它定义为圆形之周长与直径之比最简单的就是直接量圆的周长和直径然后相比。

以上是本人拙见,下面出自百度百科古人计算圆周率,一般是用割圆法。

即用圆的内接或外切正多边形来逼近圆的周长。

阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。

这种基于几何的算法计算量大,速度慢,吃力不讨好。

随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。

把圆周率的数值算得这么精确,实际意义并不大。

现代科技领域使用的圆周率值,有十几位已经足够了。

如果用鲁道夫算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。

以前的人计算圆周率,是要探究圆周率是否循环小数。

自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。

现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。

101634