如何利用excel回测量化投资策略
持有封基:量化投资中如何使用excel中的规划求
可以百度经验里找 规划求解 的用法,然后把你的算法写出来,用规划求解去实现。
也可以用lingo,这个是求最优解的工具,比excel规划求解算的快很多,就是上手门槛稍微高一点。
用Python怎么做量化投资
本文将会讲解量化投资过程中的基本流程,量化投资无非这几个流程,数据输入------策略书写------回测输出
其中策略书写部分还涉及到编程语言的选择,如果不想苦恼数据输入和回测输出的话,还要选择回测平台。
一、数据
首先,必须是数据,数据是量化投资的基础
如何得到数据?
Wind:数据来源的最全的还是Wind,但是要付费,学生可以有免费试用的机会,之后还会和大家分享一下怎样才Wind里摘取数据,Wind有很多软件的借口,Excel,Matlab,Python,C++。
预测者网:不经意间发现,一个免费提供股票数据网站 预测者网,下载的是CSV格式
TB交易开拓者:Tradeblazer,感谢@孙存浩提供数据源
TuShare:TuShare -财经数据接口包,基于Python的财经数据包,利用Python进行摘取
如何存储数据?
Mysql
如何预处理数据?
空值处理:利用DataFrame的fill.na()函数,将空值(Nan)替换成列的平均数、中位数或者众数
数据标准化
数据如何分类?
行情数据
财务数据
宏观数据
二、计算语言&软件
已经有很多人在网上询问过该选择什么语言?笔者一开始用的是matlab,但最终选择了python
python:库很多,只有你找不到的,没有你想不到,和量化这块结合比较紧密的有:
Numpy&Scipy:科学计算库,矩阵计算
Pandas:金融数据分析神器,原AQR资本员工写的一个库,处理时间序列的标配
Matplotlib:画图库
scikit-learn:机器学习库
statsmodels:统计分析模块
TuShare:免费、开源的python财经数据接口包
Zipline:回测系统
TaLib:技术指标库
matlab:主要是矩阵运算、科学运算这一块很强大,主要有优点是WorkSpace变量可视化
python的Numpy+Scipy两个库完全可以替代Matlab的矩阵运算
Matplotlib完克Matlab的画图功能
python还有很多其他的功能
pycharm(python的一款IDE)有很棒的调试功能,能代替Matlab的WorkSpace变量可视化
推荐的python学习文档和书籍
关于python的基础,建议廖雪峰Python 2.7教程,适合于没有程序基础的人来先看,涉及到python的基本数据类型、循环语句、条件语句、函数、类与对象、文件读写等很重要的基础知识。
涉及到数据运算的话,其实基础教程没什么应用,python各类包都帮你写好了,最好的学习资料还是它的官方文档,文档中的不仅有API,还会有写实例教程
pandas文档
statsmodels文档
scipy和numpy文档
matplotlib文档
TuShare文档
第二,推荐《利用Python进行数据分析》,pandas的开发初衷就是用来处理金融数据的
三、回测框架和网站
两个开源的回测框架
PyAlgoTrade - Algorithmic Trading
Zipline, a Pythonic Algorithmic Trading Library
如何用EXCEL VBA写量化交易系统
1、 这个没有现成的程序,有都是要收费的
2 、可以在网上找一些资料自己研究,但估计回比较难找
3 、excel获取股票的交易信息这个网上有一些资料,但是控制交易好像是没有的。
4、 具体来看楼主是什么需求
5、下面是网上的一篇文章,可以参考一下
如何用Excel VBA做股票量化交易系统(原创
先学会VBA和股票交易规则,再写代码来实现
量化投资当真可以轻易撬动市场吗?
光大交易失误导致市场波动的事件引起了大家的广泛关注。量化投资一时间成为众矢之的,但量化投资当真具备轻易撬动市场的力量吗?事实上,近些年,不论是在美国,日本,还是新兴市场(比如台湾), 都出现过交易失误,或者某种策略引发市场波动的现象。人们或多或少把它们和量化投资联系起来,这种说法是值得商榷的。在上市公司数目众多,海量信息充斥市场的时代,投资者需要一种能迅速有效地汇集各种数据,并进行客观分析的投资方法,量化投资是适应了时代的需求而应运而生的。作为一种投资手段,量化投资本身是中性的,真正起作用的是模型背后的人,是“地球上最美丽的花朵”----人的思维。量化投资本身就包含了很多流派。有以基本面为主,持仓时间在几个月到一年左右的基本面量化;也有注重短期投资,持仓几天到几周,以识别各种形态,找出统计规律的统计套利;甚至日内交易数次甚至几毫秒交易一次,不持仓过夜的高频交易。在投资的资产类别上,有仅投资权益类资产的,也有跨资产类别的。从业人员结构上,基本面量化的以经济,金融,会计的背景为主,而统计套利的以数学,物理,信号处理,统计等背景为主。在模型所用的编程工具上, 简单的比如Excel, 复杂的比如SAS, R, MATLAB, JAVA, C++,有的甚至为了追求计算速度, 直接将程序写在芯片上。当股价出现异动时,各种类型的量化投资者会有不同的反应。基本面量化的投资者会忽略短期的波动,除非这种波动持续下去会导致基本面的变化;统计套利的投资者会面临两种选择,如果相信趋势会持续,就会跟上去做趋势(trend following),或者判断为某种噪音或扰动,很快会回到均衡(mean reverting),就会做反向。这种决策取决于各自的量化模型。做趋势的可能会放大波动,而做反向的反而会抵消这种波动。具体到统计套利的使用上,主要以投资银行的自营盘和对冲基金为主。虽然套利机会稍纵即逝,需要迅速的执行,他们都有很严格的风险控制。比如,每个策略可以动用的资金量,杠杆比例,止损程度,等等。这些指标都是在实时动态监控,而不是仅仅为了满足盘后结算的需要。笔者以前工作过的BGI,一直致力于基本面量化投资,其风险控制是非常严格的。每笔交易,从研究员检查模型,基金经理产生交易清单,复核,审批到交易员的执行,对交易进程的跟踪,交易成本的评估都有严谨的流程,并建立在统一的内部平台上。所以,这样的量化投资其核心是控制风险的基础上追求收益,并不具备操纵市场的能量。作为一个新鲜事物,量化投资在中国备受瞩目,各方都给予了很高的期待。同样的,作为一种投资方式,如果使用不当,的确也会给我们带来新的挑战。我们应该扬长避短,不能将洗澡水和孩子一起泼出去。