图像传感器的六大硬件技术指标
图像传感器的六大硬件技术指标
一、像素
传感器上有许多感光单元,它们可以将光线转换成电荷,从而形成对应于景物的电子图像。而在传感器中,每一个感光单元对应一个像素(Pixels),像素越多,代表着它能够感测到更多的物体细节,从而图像就越清晰,像素越高,意味着成像效果越清晰。关联一下我们中维世纪的产品:100W网络摄像机分辨率是1280X720,两个值相乘得出的就是像素值,就是近100万个像素点,130W的分辨率是1280X960,像素值就是近130万个像素点。从图像效果上看,130W的效果比100W的要好一些。
二、靶面尺寸
图像传感器感光部分的大小,一般用英寸来表示。和电视机一样,通常这个数据指的是这个图像传感器的对角线长度,如 常见的有1/3英寸,靶面越大,意味着通光量越好,而靶面越小则比较容易获得更大的景深。比如1/2英寸可以有比较大的通光量,而1/4英寸可以比较容易获得较大的景深。”关联一下我们中维世纪的产品:100W产品是1/4英寸,130W是1/3英寸,200W是1/2.7英寸,大家从画面上就能感知到上面提到的靶面尺寸的不同带来的图像画质的变化。
三、感光度
即是通过CCD或CMOS以及相关的电子线路感应入射光线的强弱。感光度越高,感光面对光的敏感度就越强,快门速度就越高,这在拍摄运动车辆,夜间监控的时候尤其显得重要。这就是解释了为什么不同的摄像机夜视会有很大差别,感光度的单位是V/LUX-SEC,V(伏)就是我们通常说的电压的单位,LUX-SEC:是光强弱的单位,这个比值越大,夜视效果越好。
四、电子快门
是比照照相机的机械快门功能提出的一个术语。其控制图像传感器的感光时间,由于图像传感器的感光值就是信号电荷的积累,感光越长,信号电荷积累时间也越长,输出信号电流的幅值也越大。电子快门越快,感光度越低,适合在强光下拍摄。
五、帧率
既指单位时间所记录或者播放的图片的数量。连续播放一系列图片就会产生动画效果,根据人类的视觉系统,当图片的播放速度大于15幅/秒(即15帧)的时候, 人眼就基本看不出来图片的跳跃;在达到24幅/s~30幅/s(即24帧到30帧)之间时就已经基本觉察不到闪烁现象了。每秒的帧数(fps)或者说帧率表示图形传感器在处理场时每秒钟能够更新的次数。高的帧率可以得到更流畅、更逼真的视觉体验。
六、信噪比
是信号电压对于噪声电压的比值,信噪比的单位用dB来表示。一般摄像机给出的信噪比值均是AGC(自动增益控制)关闭时的值,因为当AGC接通时,会对小信号进行提升,使得噪声电平也相应提高。信噪比的典型值为45~55dB,若为50dB,则图像有少量噪声,但图像质量良好;若为60dB,则图像质量优良,不出现噪声,信噪比越大说明对噪声的控制越好。这个参数关系的图像中噪点的数量,信噪比越高,给人感觉画面越干净,夜视的画面中点状的噪点就越少。
CMOS图像传感器的五大工艺技术
CIS工作原理
从最基本的层面上讲,CIS用来将相机镜头的光转换为数字数据,以创建可见的图像。当波长范围为400至700nm的可见光光能被聚集在硅衬底的光电二极管(PD)上时,CMOS图像传感器的硅表面将接收该光能,从而形成电子-空穴对。
在此过程中生成的电子通过浮动扩散(FD)转换为电压,然后再通过模数转换器(ADC)转换为数字数据。最后,数据被发送到处理器,以创建可视的数字描述,通常为图像。
CIS制造技术
生产这种复杂传感器需要特定的制造技术,通常分为五类。
1. 深光电二极管形成工艺技术
由于消费者对图像质量不断提出更高的需求,导致了业界的竞争加剧,各厂商争相提高移动CIS中的像素密度和分辨率,这种竞争反过来又进一步加速了CIS工艺技术的发展。为实现更高的图像质量,像素尺寸需要进一步减小,以便在相同大小的芯片上容纳更多的像素。
图2:光电二极管结构变化以及像素尺寸不断减小的示意图。(来源:SK Hynix)
为了避免图像质量的下降,深光电二极管的作用极为关键。为了在小像素中确保有足够的满阱容量(FWC),它的构图和实施技术难度级别远超现有的半导体存储器。为此,必须遵循高宽比率不断提高的行业趋势,确保掩模工艺技术达到超过15:1的高宽比,以阻止高能离子注入。
2. 像素-像素隔离工艺技术
对高清CIS来说,像素间彼此隔离的技术至关重要。不同的芯片制造商会采用不同的隔离技术,但如果隔离技术不佳,将可能导致图像缺陷,例如混色和散色。
越来越高的像素密度和分辨率成为普遍的需求,隔离便成为CIS市场中图像质量的重要标准。 除此之外,隔离工艺还会出现一些问题。因此,业界正在努力选择更好的设备,并开发新的解决方案以提高良品率和产品质量。
3. 彩色滤光片阵列(CFA)工艺技术
彩色滤光片阵列(CFA)是CIS领域独有的一种工艺,它在半导体存储工艺中并不常见。CFA工艺通常包括一个彩色滤光片(CF)和一个微透镜(ML),滤光片将入射光根据各自波长范围过滤为红色、绿色和蓝色,而微透镜则提高聚光效率。为了获得稳定的图像质量,需要评估R/G/B彩色材料,并研究出可以优化形状和厚度等参数的技术。
最近,一系列高质量且功能强大的CIS产品出现在市场上。它们基于Quad Bayer等技术,且辅以CFA的基本形式。
图3:彩色滤光片阵列由彩色滤光片和微透镜组成。 (来源:SK Hynix)
4.晶圆堆叠工艺技术
晶圆堆叠(即将两个晶圆粘贴在一起)是生产高像素和高清晰度CIS产品的一项重要技术。 对于高像素CIS产品,像素阵列和逻辑电路分别在单个晶圆上形成,然后在处理过程中采用晶圆键合技术将它们连接起来。
图4:晶圆堆叠极大地提升了CIS的性能。(来源:SK Hynix)
大多数CIS芯片制造商已经采用了晶圆堆叠技术,这项技术的各个方面仍在持续改进中。
5. CIS良率和质量控制技术
CIS产品开发和批量生产过程中最基本的要求之一是对金属污染的控制。由于CIS产品对污染的敏感度是存储产品的几倍,而且污染直接影响产品良率与质量,因此必须采用各种污染控制技术。
除此之外,等离子体损伤控制也很重要。由于在工艺过程中造成的损坏会导致图像性能下降(如热像素),因此有必要对关键工艺进行精确管理。
CIS的未来前景
毫不夸张地说,对于由CIS驱动的应用,其有效性将取决于工艺技术。而且,各种工艺相互交互的方式也有很大影响。仅仅优化制造工艺的某一方面是不够的,各种工艺必须全部优化才能实现有机互补。
不过,回报是巨大的。从制造业到医疗保健服务,再到监控,几乎每个领域都可以利用CIS新技术来改善。拥有对这个世界更丰富、更详尽的视野,各行各业的公司都将能够创建更智能、更先进的产品和服务,从而使终端客户和整个社会受益。
内外紫外增强图像传感器的研究进展
近年来图像传感器在紫外成像方面的应用越来越广泛,尤其是以CCD和CMOS为主的紫外图像传感器受到了研究人员的广泛关注。半导体技术的进步和纳米材料的发展进一步推动了紫外图像传感器的研究。
固态紫外图像传感器以其体积小、寿命长、耐恶劣环境、可靠性高等优点受到广泛的关注,然而其热噪声较大、成本较高、响应波长受真空紫外波段限制,所以在高信噪比电路读出和掺杂缺陷抑制方面亟待进一步研究。相比之下,以CMOS/CCD为基础的硅基紫外图像传感器更易实现大面阵,成本比其他类型的图像传感器更低,性能也足以和真空型紫外图像传感器媲美,以及高分辨、低噪声和高帧率的优点使得硅基紫外图像传感器在短时间内主导紫外成像市场。
据麦姆斯咨询报道,昆明物理研究所唐利斌研究员课题组在《红外技术》期刊上发表了以“紫外增强图像传感器的研究进展”为主题的综述文章。唐利斌研究员主要从事光电材料与器件的研究工作。
这项研究综述了国内外紫外增强图像传感器的研究进展,介绍了几种增强器件紫外响应的材料,另外还简要概述了紫外图像传感器在生化分析、大气监测、天文探测等方面的应用,并讨论了CCD/CMOS图像传感器在紫外探测方面所面临的挑战。
CMOS是金属-氧化物-半导体电容器,其成像原理为每个像素都有自己的电荷电压转换器,每个像素单独完成电荷电压的转换,直接将电荷转换成电压来实现成像,这使得CMOS的整体读出效率非常高。与之相似的CCD有着体积小、寿命长、灵敏度高、畸变小等特性,其工作原理为CCD是在像素上增加电压,把像素里的电荷一个一个地从纵向逼到和它相邻的像素里面,最后经过一个共同输出端,再经过模拟数字转换形成数字信息,最终实现成像。
图像传感器工作原理和结构示意图:(a)、(b)、(c)和(d)分别为CCD、CMOS、前照式图像传感器结构和背照式图像传感器结构;(e)堆栈式CMOS图像传感器;(f)具有Cu-Cu杂化键合的新型堆栈式背照CMOS图像传感器及器件截面图
虽然CMOS图像传感器的灵敏度和动态范围都没有CCD图像传感器高,但因为其低成本和高集成度等优势,再加上近年来集成电路技术、电路消音技术和半导体电子技术的快速发展,CMOS图像传感器有了质的飞跃,弥补了CCD图像传感器的劣势,二者在图像传感器领域相辅相成。
紫外响应增强技术的基本原理是利用材料吸收紫外辐射后发射的荧光与图像传感器响应灵敏度高的波段相匹配的特性,从而来增强传感器的紫外响应能力。
紫外增强图像传感器技术的进步使其在各领域都有广泛的应用,如天文探测、生化分析、大气监测、电晕放电、日盲检测等。近年来,紫外成像技术被引入制药领域,用于片剂的质量控制。
硅半导体技术的进步推动了图像传感器的发展,在可靠性、集成度、大面阵、成本等方面都有明显的进步,由于硅本身性质使得图像传感器在紫外波段的低响应率、低量子效率限制了其进一步发展。伴随紫外探测技术的广泛应用需求,发展高响应率、高量子效率的紫外图像传感器仍面临一些挑战:(1)尽管目前可以用半导体工艺(背减薄、表面离子注入、激光退火和减反射膜)来改善图像传感器在紫外波段的响应能力,但其整体效果不太理想;(2)虽然可以通过传统的Lumogen、晕苯等有机荧光转换材料提升图像传感器的紫外探测效率,但综合其稳定性、荧光量子产率、成本和光学性能来考虑,需要进一步研究新的有机发光材料体系;(3)量子点材料与聚合物的非原位复合会引起相邻量子点发生团聚,导致其荧光量子产率和量子点薄膜透过率不高。综合来看,紫外增强图像传感器相较于GaAlN基紫外焦平面探测器具有成本低、工艺与硅基器件兼容等特点,仍然值得在此方向开展相关的基础及应用研究。
该项目获得国家重点研发计划(2019YFB2203404)和云南省创新团队项目(2018HC020)的支持。该研究第一作者为昆明物理研究所硕士研究生罗磊,主要从事紫外增强CMOS图像传感器的研究工作。